Spoke Cavity Cryomodule Concept for the Accelerator Driven Test Facility (ADTF) Low Energy Linac (LEL)

J. Patrick Kelley October 8, 2002

Major Contributors

Phil Roybal, Mechanical Design, TechSource
Richard LaFave, Stress Analysis & Alignment, Formerly of LANSCE-1
Bob Gentzlinger, Helium Vessel & Tuner, ESA-DE
Joe Waynert, Coupler Thermal Analysis, ESA-AET
Dale Schrage, LEL Lead, LANSCE-1
Eric Schmierer, Coupler, ESA-DE
Frank Krawczyk, RF Physics, LANSCE-1
Bob Garnett, Beam Physics, LANSCE-1
Tsuyoshi Tajima, Cavities, LANSCE-1

Introduction

- The Accelerator Driven Test Facility (ADTF)
 - Is a reactor concepts test bed for transmutation of nuclear waste.
 - Uses a 13.3 mA (CW), 600 MeV linear accelerator to produce neutrons by spallation.
- The ADTF Low Energy Linac (LEL) uses 350 MHz superconducting (SC) spoke cavities between 6.7 - 109 MeV.
- Beam dynamics dictates that cavities of three β types be used:
 - $-\beta$ =0.175 two-gap cavities,
 - » A β =0.175 lattice element consists of a solenoid magnet and two cavities
 - » The focussing period is 2.26 m
 - $-\beta$ =0.2 and β =0.34 three-gap cavities,
 - » the lattice consists of a solenoid magnet and three cavities.
 - » The focussing periods are 3.05 and 3.46 m respectively.

Spoke-Cavity Cryomodule Period

- The cryomodule period was dictated by:
 - The need to reduce LEL length and total system costs by minimizing distances between elements.
 - » This led to inclusion of the solenoids as SC elements in the cryomodule.
 - The need for periodic warm spaces for beam diagnostics.
 - The desire to maximize cryomodule lengths to
 - » minimize the total number of warm to cold transitions.
 - reduce heat loads and cryogenic distribution system complexity.
 - The need to fit the module elements into the existing clean room.

Spoke-Cavity Cryomodule Period

β=0.175 Cryomodule

β=0.2 or 0.34 Cryomodule

		β=0.175	β =0.2	β=0.34
Cryomodule Period	A	4.53 m	6.10 m	6.92 m
Cryomodule Length	В	4.23 m	5.80 m	6.62 m
Focusing Period	C	2.26 m	3.05 m	3.46 m
Warm to Cold Transition (1)	D	0.39 m	0.39 m	0.39 m
Magnet to Cavity Drift	Е	0.3 m	0.3 m	0.3 m
Cavity to Cavity Drift	F	0.3 m	0.3 m	0.3 m
Cavity to Magnet Drift	G	1.11 m	1.11 m	1.11 m
Warm to Cold Transition (2)	Н	0.42 m	0.42 m	0.42 m
Cryomodule to Cryomodule Drift	I	0.3 m	0.3 m	0.3 m
Magnet Physical Length		0.15 m	0.15 m	0.15 m
Cavity Physical Length		0.20 m	0.30 m	0.43 m

Spoke-Cavity Cryomodule Parameters

	β=0.175	β=0.2	β=0.34
Q_{o}	1.72 E 9	1.92 E 9	2.50 E 9
E_{acc}	5 MV/m	5 MV/m	5 MV/m
Frequency	350 MHz	350 MHz	350 MHz
Coupled Power @ 13.3mA(100 mA)	4.7 (35.3) kW	10.35 (77.8) kW	18.6 (139.8) kW
Cavity Operating Temperature	4.5 K	4.5 K	4.5 K
Cavity External Magnetic Field (Goal)	5 milli-Gauss	5 milli-Gauss	5 milli-Gauss
Cavity Mechanical Resonance	> 200 Hz	> 200 Hz	> 200 Hz
Tuning Stiffness	~ 26 kHz/mil	To Be Determined	To Be Determined
	0.31 kHz/lb.		
Cavity Detuning Rate in < 300 msec	67 kHz/sec	To Be Determined	To Be Determined
	67 micron/sec		
Shield Operating Temperature	40-55 K	40-55 K	40-55 K
Solenoid Field	1.8-2.32 T	2.5-4.0 T	4.0-5.4 T
Current	20 A	20 A	20 A
Lead Type	Conduction Cooled	Conduction Cooled	Conduction Cooled

Cryomodule Design Goal and Guidelines

- Goal: Provide a cryomodule design that can easily be built by industry.
- Focus of Presentation
 - B = 0.34 Spoke Cavity Cryomodule.
 - » Elements are similar for all ADTF spoke cavity cryomodules.
- Basic guidelines used during cryomodule design development :
 - Adopt concepts and components from previous programs where possible.
 - Insert helium vessel assemblies axially into the vacuum vessel.
 - » Minimizes cleanroom time and simplify assembly
 - » Minimize radial penetrations is a corollary.
 - Adopt design similarity between the three module types.
 - » With the exception of length, parts should be identical.
 - Since ADTF has it roots in the Accelerator Production of Tritium Program (APT),
 - » It must be upgradable to 100 ma operations for tritium production.
 - » The ADTF cryomodule must fit into the APT tunnel design.
 - (After the completion of this work, this requirement was eliminated.)

Spoke Cavity Cryomodule Form

- Physical Form
 - Ingress and egress of cryogens at center of module
 - » Permits axial assembly approach

Tuners and Helium Vessels

- Cavities are tuned individually.
 - Both end walls of a spoke cavity must be flexed
 - » Tuner assembly must straddle the cavity.
- A cavity is housed in its own titanium helium vessel with the tuner outside the vessel.
 - If both cavity and tuner were housed in a helium vessel
 - » Helium vessel size would increase,
 - » Essentially flat helium vessel heads would be necessary to minimize spacing between cavities, leading to thicker material or elaborate stiffeners.
 - » Multiple cold penetrations would be required.
 - If multiple cavities with tuners were housed in a single vessel,
 - » The length dictates elaborate penetrations to handle thermal contractions.
- A Ledford/Wood tuner mechanism (APT program) was adopted.
 - The cavity stiffeners are used to transfer loads through the helium vessel.
 - Bellows are used to de-couple the beam tube from the helium vessel.
 - A cold stepper motor drives tuner. (Warm motor/axial drive shaft possible.)
 - A piezoelectric actuator is used to detune the cavity in < 300 msec.

3-Gap Spoke Cavity with Helium Vessel

S = 0.34 Spoke Cavity Helium Vessel with Tuner Assembly

Power Coupler

- The fixed power coupler is a 75 Ω , coaxial, unbiased unit.
- Couplers are oriented 20° from vertical, with adjacent couplers in a lattice on alternate sides of the module. The couplers closest to the center Tee section are on the same side of the module.
 - The near vertical orientation was due to APT tunnel constraints.
 - The alternating sides coupler arrangement is necessary to maintain clearance between large WR2300 waveguides (0.584 X 0.146 m.).
- Heat loads were calculated for a single point thermal intercept
- The coupler is also the only helium vessel assembly support structure, therefore simplifying assembly.
 - Assembly is simplified with fewer penetrations through shields and blankets. Fewer penetrations through the magnetic shields reduces magnetic-fringe fields.

Power Coupler

(a) Coupler - vacuum vessel interface. (b) Cryomodule section. Warm shields not shown.

Cavity Cooling Approach - A Thermosyphon

- An open-loop thermosyphon cooling approach was selected to cool the spoke cavities.
 - Individual helium vessels limits the volume available for helium inventory.
 - At 4.5 K, bath cooling has better heat transfer properties than supercritical forced flow.
 - » boiling of the helium is anticipated with the potential for vapor trapping/locking.
 - A thermosyphon
 - » deals well with space constraints,
 - » provides reasonable helium inventory,
 - » reduces the potential for vapor locking and
 - » improves heat transfer through localized forced flow.

Thermosyphon Analysis - 0.34 β Cryomodule

All tube 0.165 cm wall

Orifice plates balance flows through the legs.

$$\chi$$
 - flow quality

Bellows in the runs between risers were included in the analysis but are not shown.

 $m_2 = 35.2 \text{ g/s}, \chi_2 = 0.029$

 $m_3 = 34.9 \text{ g/s}, \chi_3 = 0.029$

 $m_t = 210.9 \text{ g/s}$

Cryogen Supply

- Supercritical helium at 4.6 K and 4 atm is supplied to the module
 - The flow is split
 - » A portion expanded by a JT valve to fill the thermosyphon reservoir.
 - » The remaining flow is recooled and directed serially to the solenoids.
 - A recooler between magnets is sized so that the downstream magnet is not impacted by an upstream magnet quench.
 - A recooler after the downstream magnet removes quench or other heat from the flow, allowing the return of useful cold gas to the cryoplant.
 - The supercritical flow is then throttled to thermosyphon reservoir pressure to provide liquid, and to eliminate the need for a separate return line in the distribution system.
- The shields and intercepts are cooled by a flow of supercritical helium at 4 atm. and 40 < T < 55 K.
 - Current leads are conductively cooled with a 40 K intercept.

Spoke Cavity Cryomodule - Flowsheet

Spoke Cavity Cryomodule Clean Room Assembly

- Known relative positions of beam center line, coupler inner flange and foot pads.
- Helium vessel assemblies (cavity/coupler/helium vessel)
 - Are mounted on pre-aligned strong-back
 - Fiducials are added to outer coupler flanges (for relating position of beam tube centerline to coupler outer flange)
 - Beam tubes are installed.
 - Temporarily locked-down to strong-back
- Solenoid magnet assemblies
 - Are mounted on the strong-back.
 - Beam tubes are installed (cavity to solenoid, solenoid to ambient).
- Transfer alignment data to fiducials on outer coupler flanges
- Final lock-down to strong-back

Spoke Cavity Cryomodule Clean Room Assembly - Figure

Spoke Cavity Module Final Cold Mass Assembly

- Remainder of assembly performed outside the clean room
- Mount tuner assemblies
 - Tuner Same as the APT Tuner
 - Cold Motor Saclay-TESLA-SNS Pedigree
 - Piezoelectric actuator
 - » Allows for cavity detuning in < 300 msec.</p>
- Mount manifolds
 - 2" tube supply, 4" tube return, 1/2" tube cooldown supply
- Add multilayer insulation blanket (MLI 15 layers) and Mu metal shield (0.040" thick)

Spoke Cavity Module Final Cold Mass Assembly - Figure

Spoke Cavity Module Final Assembly

- Insert cold mass assembly into prefabricated Tee section
 - Tee thermal shield (Cu), magnetic shield (Mu metal 0.040") & MLI blankets (4 @ 15 layers ea.) preinstalled.
- Mount vacuum vessel cylinders to Tee section
 - Thermal shield, MLI blankets, magnetic shield preinstalled (similar to CEBAF's approach).
 - Thermal shield & MLI blanket bridges made.
- Mate couplers/solenoids to vacuum vessel
 - Couplers are only mechanical support for helium vessel assemblies
 - Solenoids use compression post support
 - » Similar posts used by SSC, RHIC, LHC
- Remove strong-back
- Install current lead feedthroughs
- Install Tee-section head/internals make pipe connections
- Install end caps

Spoke Cavity Cryomodule Final Assembly - Figure

Spoke Cavity Cryomodule Summary

- Adopted concepts and components from previous programs minimize risk.
- Thermosyphon cooling improves thermal performance.
- Coupler supported cavities
 - simplifies assembly,
 - minimizes thermal shorts, magnetic fringe fields, and
 - reduces part count.
- Axial insertion
 - minimizes clean room time and
 - simplifies assembly.
- Similar work has been done by industry.

Back-up Slides

Section 4 (Largest) Solenoid Magnet Dimensions and Parameters

Electrical Parameters

- Current 20 A
- Inductance 280 H
- Power Supply Voltage 20 V
- Field @ Centerline 6 T
- Field 6.5 cm from end of windings < 0.1 T
- Charge time 280 sec.
- Stored Energy 56 kJ
- Physical Parameters
 - Cold Bore Diameter 11 cm
 - Active Length 30 cm
 - Diameter of Windings 15.3 cm
- Leads Conduction Cooled
 - Intercepted at the shield temperature

Largest Solenoid Magnet Dimensions and Parameters

- Cooling (Steady State and Cooldown) Supercritical He @ 4.5 K, 4 atm.
- Quench
 - Magnet goes normal in ~ ½ second.
 - Temperature reaches ~ 185 K
 - Boiloff at 4.5 K sat. ~ 23 L
 - Recovery Time System Dependent
 - Note Segmenting or some other approach will be necessary to minimize internal voltages generated during quench.

Spoke Cavity Coupler Heat Loads* (100 milliamps - No Margin)

	RF On	RF On	RF On	RF Off
Inner Conductor Cooling Temp.	300 K	300 K	300 K	300 K
Tunnel/Compressor Water Temp.	300 K	300 K	310 K	300 K
Intercept Temp.	40 K	50 K	40 K	40 K
4.5 K Heat Load	3.8 W	4.7 W	3.8 W	3.3 W
Intercept Heat Load	20.6 W	19.2 W	21.7 W	20.5 W
Wall Power	1436 W	1549 W	1512 W	1303 W

^{*}Waynert, Joe, Thermal Analysis on ADTF Spoke Cavity Power Coupler, ESA-EPE:01-075, March 30, 2001.

Spoke Cavity Cryomodule Preliminary 4.5 K Heat Loads (100 milliamps - no margin)

		β = 0.175			β = 0.2			β = 0.34	
Unit	# Units	H.L/Unit	Tot. H.L.	# Units		Tot. H.L.	# Units	H.L/Unit	Tot.H.L.
Cavity (Krawczyk)	4	2.85	11.4	6	8.37	50.22	6	14.64	87.84
Couplers (Waynert)	4	4	16	6	4	24	6	4	24
Beam Tube (Waynert)	2	0.7	1.4	2	0.7	1.4	2	0.7	1.4
Current Lead Pair - 20 A	2	0.4	0.8	2	0.4	0.8	2	0.4	8.0
(Weisend)									
Radiation (0.02 W/m^2)	17.23	0.02	0.34	22.89	0.02	0.46	25.84	0.02	0.52
Small Male & Female Bayonets	3	0.41	1.23	3	0.41	1.23	3	0.41	1.23
Large Male & Female Bayonet	1	1.7	1.7	1	1.7	1.7	1	1.7	1.7
Valves (used APT Value for JT)	4	0.25	1	4	0.25	1	4	0.25	1
Relief Lines (small)	2	0.024	0.047	2	0.024	0.047	2	0.024	0.047
Relief Lines (large)	1	0.14	0.14	1	0.14	0.14	1	0.14	0.14
Cables (used APT value)	1	0.7	0.7	1	0.7	0.7	1	0.7	0.7
Solenoid Supports (CERN LHC	2	1	2	2	1	2	2	1	2
Post)		4	4	4	4	4		4	4
Strong-back Supports (CERN LHC Post)	4	1	4	4	1	4	4	1	4
HOMs (≤ 2 W TBD - Krawczyk)	4	2	8	4	2	8	4	2	8
Total 4.5 K Heat Loads			48.76			95.70			133.38

Spoke Cavity Cryomodule Preliminary Shield Heat Loads (100 milliamps - no margin)

		β = 0.175			β = 0.2			β = 0.34	
Unit	# Units	H.L/Unit		# Units	H.L/Unit	Tot. H.L.	# Units	H.L/Unit	Tot.H.L.
Op. it = (16 pp. 10 pp. 10)		0	0	0	0	0		0	0
Cavity (Krawczyk)	4	0	0	6	0	0	6	0	0
Couplers (Waynert)	4	20.6	82.4	6	20.6	123.6	6	20.6	123.6
Beam Tube (Waynert)	2	1.47	2.94	2	1.47	2.94	2	1.47	2.94
Current Lead Pair - 20 A (Weisend)	2	1.6	3.2	2	1.6	3.2	2	1.6	3.2
Radiation (1 W/mA^2)	17.23	1.00	17.23	22.89	1.00	22.89	25.84	1.00	25.84
Small Male & Female Bayonets	3	0.75	2.25	3	0.75	2.25	3	0.75	2.25
Large Male & Female Bayonet	1	2.56	2.56	1	2.56	2.56	1	2.56	2.56
Valves (used APT Value for JT)	4	2.5	10	4	2.5	10	4	2.5	10
Relief Lines (small)	2	0.425	0.850	2	0.425	0.850	2	0.425	0.850
Relief Lines (large)	1	2.551	2.551	1	2.551	2.551	1	2.551	2.551
Cables (used APT value)	1	2	2	1	2	2	1	2	2
Solenoid Supports (CERN LHC Post)	2	8	16	2	8	16	2	8	16
Strong-back Supports (CERN LHC Post)	4	8	32	4	8	32	4	8	32
HOMs	4	0	0	4	0	0	4	0	0
Total Shield Heat Load			173.98			220.84			223.79

LEL Refrigeration - Conceptual Layout - APT Type ß = 0.48 Cryomodule

Spoke Cavity Cryomodule Interface to Distribution System Flowsheet

Spoke Cavity Module Test Flowsheet

ß = 0.48 Cryomodule - Flowsheet

